3.376 \(\int \frac{\sqrt [3]{a+b x}}{x^2} \, dx\)

Optimal. Leaf size=97 \[ -\frac{b \log (x)}{6 a^{2/3}}+\frac{b \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 a^{2/3}}-\frac{b \tan ^{-1}\left (\frac{2 \sqrt [3]{a+b x}+\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{2/3}}-\frac{\sqrt [3]{a+b x}}{x} \]

[Out]

-((a + b*x)^(1/3)/x) - (b*ArcTan[(a^(1/3) + 2*(a + b*x)^(1/3))/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(2/3)) - (b*Log[
x])/(6*a^(2/3)) + (b*Log[a^(1/3) - (a + b*x)^(1/3)])/(2*a^(2/3))

________________________________________________________________________________________

Rubi [A]  time = 0.0334369, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.385, Rules used = {47, 57, 617, 204, 31} \[ -\frac{b \log (x)}{6 a^{2/3}}+\frac{b \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 a^{2/3}}-\frac{b \tan ^{-1}\left (\frac{2 \sqrt [3]{a+b x}+\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{2/3}}-\frac{\sqrt [3]{a+b x}}{x} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)^(1/3)/x^2,x]

[Out]

-((a + b*x)^(1/3)/x) - (b*ArcTan[(a^(1/3) + 2*(a + b*x)^(1/3))/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(2/3)) - (b*Log[
x])/(6*a^(2/3)) + (b*Log[a^(1/3) - (a + b*x)^(1/3)])/(2*a^(2/3))

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 57

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, -Simp[L
og[RemoveContent[a + b*x, x]]/(2*b*q^2), x] + (-Dist[3/(2*b*q), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x
)^(1/3)], x] - Dist[3/(2*b*q^2), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x]
&& PosQ[(b*c - a*d)/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{\sqrt [3]{a+b x}}{x^2} \, dx &=-\frac{\sqrt [3]{a+b x}}{x}+\frac{1}{3} b \int \frac{1}{x (a+b x)^{2/3}} \, dx\\ &=-\frac{\sqrt [3]{a+b x}}{x}-\frac{b \log (x)}{6 a^{2/3}}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}-x} \, dx,x,\sqrt [3]{a+b x}\right )}{2 a^{2/3}}-\frac{b \operatorname{Subst}\left (\int \frac{1}{a^{2/3}+\sqrt [3]{a} x+x^2} \, dx,x,\sqrt [3]{a+b x}\right )}{2 \sqrt [3]{a}}\\ &=-\frac{\sqrt [3]{a+b x}}{x}-\frac{b \log (x)}{6 a^{2/3}}+\frac{b \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 a^{2/3}}+\frac{b \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}\right )}{a^{2/3}}\\ &=-\frac{\sqrt [3]{a+b x}}{x}-\frac{b \tan ^{-1}\left (\frac{1+\frac{2 \sqrt [3]{a+b x}}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{\sqrt{3} a^{2/3}}-\frac{b \log (x)}{6 a^{2/3}}+\frac{b \log \left (\sqrt [3]{a}-\sqrt [3]{a+b x}\right )}{2 a^{2/3}}\\ \end{align*}

Mathematica [C]  time = 0.113986, size = 33, normalized size = 0.34 \[ \frac{3 b (a+b x)^{4/3} \, _2F_1\left (\frac{4}{3},2;\frac{7}{3};\frac{b x}{a}+1\right )}{4 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)^(1/3)/x^2,x]

[Out]

(3*b*(a + b*x)^(4/3)*Hypergeometric2F1[4/3, 2, 7/3, 1 + (b*x)/a])/(4*a^2)

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 92, normalized size = 1. \begin{align*} -{\frac{1}{x}\sqrt [3]{bx+a}}+{\frac{b}{3}\ln \left ( \sqrt [3]{bx+a}-\sqrt [3]{a} \right ){a}^{-{\frac{2}{3}}}}-{\frac{b}{6}\ln \left ( \left ( bx+a \right ) ^{{\frac{2}{3}}}+\sqrt [3]{a}\sqrt [3]{bx+a}+{a}^{{\frac{2}{3}}} \right ){a}^{-{\frac{2}{3}}}}-{\frac{b\sqrt{3}}{3}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{\frac{\sqrt [3]{bx+a}}{\sqrt [3]{a}}}+1 \right ) } \right ){a}^{-{\frac{2}{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)^(1/3)/x^2,x)

[Out]

-(b*x+a)^(1/3)/x+1/3*b/a^(2/3)*ln((b*x+a)^(1/3)-a^(1/3))-1/6*b/a^(2/3)*ln((b*x+a)^(2/3)+a^(1/3)*(b*x+a)^(1/3)+
a^(2/3))-1/3*b/a^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/a^(1/3)*(b*x+a)^(1/3)+1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/3)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.88343, size = 410, normalized size = 4.23 \begin{align*} -\frac{2 \, \sqrt{3}{\left (a^{2}\right )}^{\frac{1}{6}} a b x \arctan \left (\frac{{\left (a^{2}\right )}^{\frac{1}{6}}{\left (\sqrt{3}{\left (a^{2}\right )}^{\frac{1}{3}} a + 2 \, \sqrt{3}{\left (a^{2}\right )}^{\frac{2}{3}}{\left (b x + a\right )}^{\frac{1}{3}}\right )}}{3 \, a^{2}}\right ) +{\left (a^{2}\right )}^{\frac{2}{3}} b x \log \left ({\left (b x + a\right )}^{\frac{2}{3}} a +{\left (a^{2}\right )}^{\frac{1}{3}} a +{\left (a^{2}\right )}^{\frac{2}{3}}{\left (b x + a\right )}^{\frac{1}{3}}\right ) - 2 \,{\left (a^{2}\right )}^{\frac{2}{3}} b x \log \left ({\left (b x + a\right )}^{\frac{1}{3}} a -{\left (a^{2}\right )}^{\frac{2}{3}}\right ) + 6 \,{\left (b x + a\right )}^{\frac{1}{3}} a^{2}}{6 \, a^{2} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/3)/x^2,x, algorithm="fricas")

[Out]

-1/6*(2*sqrt(3)*(a^2)^(1/6)*a*b*x*arctan(1/3*(a^2)^(1/6)*(sqrt(3)*(a^2)^(1/3)*a + 2*sqrt(3)*(a^2)^(2/3)*(b*x +
 a)^(1/3))/a^2) + (a^2)^(2/3)*b*x*log((b*x + a)^(2/3)*a + (a^2)^(1/3)*a + (a^2)^(2/3)*(b*x + a)^(1/3)) - 2*(a^
2)^(2/3)*b*x*log((b*x + a)^(1/3)*a - (a^2)^(2/3)) + 6*(b*x + a)^(1/3)*a^2)/(a^2*x)

________________________________________________________________________________________

Sympy [C]  time = 3.25836, size = 643, normalized size = 6.63 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)**(1/3)/x**2,x)

[Out]

4*a**(7/3)*b*exp(2*I*pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)/a**(1/3))*gamma(4/3)/(9*a**3*exp(2*I*pi/3)*gamma(
7/3) - 9*a**2*b*(a/b + x)*exp(2*I*pi/3)*gamma(7/3)) + 4*a**(7/3)*b*log(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar
(2*I*pi/3)/a**(1/3))*gamma(4/3)/(9*a**3*exp(2*I*pi/3)*gamma(7/3) - 9*a**2*b*(a/b + x)*exp(2*I*pi/3)*gamma(7/3)
) + 4*a**(7/3)*b*exp(-2*I*pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar(4*I*pi/3)/a**(1/3))*gamma(4/3)/(9*
a**3*exp(2*I*pi/3)*gamma(7/3) - 9*a**2*b*(a/b + x)*exp(2*I*pi/3)*gamma(7/3)) - 4*a**(4/3)*b**2*(a/b + x)*exp(2
*I*pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)/a**(1/3))*gamma(4/3)/(9*a**3*exp(2*I*pi/3)*gamma(7/3) - 9*a**2*b*(a
/b + x)*exp(2*I*pi/3)*gamma(7/3)) - 4*a**(4/3)*b**2*(a/b + x)*log(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar(2*I*
pi/3)/a**(1/3))*gamma(4/3)/(9*a**3*exp(2*I*pi/3)*gamma(7/3) - 9*a**2*b*(a/b + x)*exp(2*I*pi/3)*gamma(7/3)) - 4
*a**(4/3)*b**2*(a/b + x)*exp(-2*I*pi/3)*log(1 - b**(1/3)*(a/b + x)**(1/3)*exp_polar(4*I*pi/3)/a**(1/3))*gamma(
4/3)/(9*a**3*exp(2*I*pi/3)*gamma(7/3) - 9*a**2*b*(a/b + x)*exp(2*I*pi/3)*gamma(7/3)) + 12*a**2*b**(4/3)*(a/b +
 x)**(1/3)*exp(2*I*pi/3)*gamma(4/3)/(9*a**3*exp(2*I*pi/3)*gamma(7/3) - 9*a**2*b*(a/b + x)*exp(2*I*pi/3)*gamma(
7/3))

________________________________________________________________________________________

Giac [A]  time = 2.20314, size = 142, normalized size = 1.46 \begin{align*} -\frac{\frac{2 \, \sqrt{3} b^{2} \arctan \left (\frac{\sqrt{3}{\left (2 \,{\left (b x + a\right )}^{\frac{1}{3}} + a^{\frac{1}{3}}\right )}}{3 \, a^{\frac{1}{3}}}\right )}{a^{\frac{2}{3}}} + \frac{b^{2} \log \left ({\left (b x + a\right )}^{\frac{2}{3}} +{\left (b x + a\right )}^{\frac{1}{3}} a^{\frac{1}{3}} + a^{\frac{2}{3}}\right )}{a^{\frac{2}{3}}} - \frac{2 \, b^{2} \log \left ({\left |{\left (b x + a\right )}^{\frac{1}{3}} - a^{\frac{1}{3}} \right |}\right )}{a^{\frac{2}{3}}} + \frac{6 \,{\left (b x + a\right )}^{\frac{1}{3}} b}{x}}{6 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)^(1/3)/x^2,x, algorithm="giac")

[Out]

-1/6*(2*sqrt(3)*b^2*arctan(1/3*sqrt(3)*(2*(b*x + a)^(1/3) + a^(1/3))/a^(1/3))/a^(2/3) + b^2*log((b*x + a)^(2/3
) + (b*x + a)^(1/3)*a^(1/3) + a^(2/3))/a^(2/3) - 2*b^2*log(abs((b*x + a)^(1/3) - a^(1/3)))/a^(2/3) + 6*(b*x +
a)^(1/3)*b/x)/b